

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS COLLEGES AFFILIATED COLLEGES REGULATIONS 2021

CHOICE BASED CREDIT SYSTEM

B. TECH. BIOTECHNOLOGY

1. Program Objectives (POs)

The primary objective of the Bachelor of Industrial Biotechnology program is to prepare professionals with the skills required to work in the Biotechnology industry with particular emphasis on the engineering aspects of manufacturing and design.

They are trained to

- 1. Achieve successful professional and technical career.
- 2. Have a strong foundation in Basic Sciences, Mathematics, Medical Sciences, Bioinformatics and process engineering.
- 3. Have knowledge on the theory and practices in the field of Biotechnology, especially in the areas of downstream processing, Medical biotechnology and Bioinformatics and allied areas.
- 4. Engross in life-long learning to keep themselves abreast of new developments in Biotechnology.
- 5. Practice and inspire high ethical values and technical standards.

The Overall objective of the Program is to promote education and research in biotechnology and provide academic and professional excellence for immediate productivity in industrial, governmental, or clinical settings for an ultimate benefit of society and environment.

As a result of this program, the student will be able to:

- 1. Recall factual information on broad knowledge based proficiency in core themes, principles and components of Basic Sciences.
- 2. Create and develop strategies that reflect the interdisciplinary nature of science, regulation and enterprise in the biotechnology industry.
- 3. Define and solve problems using scientific methods in biotechnology and allied subjects.
- 4. Consider implications of biotechnology in societal, environmental and educational frameworks.
- 5. Access current information and literature in science and Prepare and present scientific data
- 6. Demonstrate knowledge of biological processes from the molecular and cellular perspectives.
- 7. Approach and solve biological problems critically with scientific literacy in individual and group settings.
- 8. Able to understand, analyze and apply the process engineering concepts an incredibly wide diversity of applications including pharmaceutical development, crop and livestock improvement, diagnostic and therapeutic medicine, industrial processing, and bioremediation of contaminated environments.

Program Specific Outcome:

PSO I:

Impart the deeper insights in to the Fundamentals of Biotechnology topics and to familiarize them with various upcoming and challenging areas relevant to biotechnology sector.

PSO II:

Analyse and perform the experimental procedures to address the societal problems through modern tools and techniques in biotechnology.

PSO III

Apply the interdisciplinary knowledge acquired through the program to solve problems in the biotechnology industry.

PSO IV:

Demonstrate the innovative research ideas and to provide cost-effective and sustainable solutions in Biotechnology.

Programme Objective			Prog	gramme	Outco	mes			Pro	ogramn Outc	ne spec omes	ific
	1	2	3	4	5	6	7	8	ı	II	III	IV
I						~	~					~
II	/		~	٦,	~			7	~		~	
III		V	~	~			10	. 4		~		
IV			~	~	~	~	~					~
V				27		1	~	1		~		

Mapping for B. Tech. Biotechnology - R2021

			Mapping for B. Tech. Biotechnology – R20 PO									P	so	
			1	2	3	4	5	6	7	8	I	II	III	IV
		5 () 15 11 1												
	1	Professional English - I	4			~				/				
	ı	Matrices and Calculus	/	/										
	S	Engineering Physics	/	V										
	Е	Engineering Chemistry	/	~										
Y e	M	Programming	'		~								/	
a r		Problem Solving and Python Programming Laboratory							~				>	
		Physics and Chemistry												
1		Laboratory							~					
		Professional English - II					~							
	2	Statistics and Numerical Methods	/	V	h. 1 . 1	7	/)					~	
		Engineering Graphics	~	v		77	100						/	
	S E	Materials Science for Biotechnologists	~	V		72	37			V			~	
	M	Basic Electrical, Electronics						1	1				~	
		and Instrumentation Engineering	~	1				Y	Λ					
		Bioorganic Chemistry	~	~							/			
		Engineering Practices Laboratory							~	J			~	
		Bioorganic Chemistry			FY						/			
		Laboratory	~	~	Ė		ر ا	/	4					
	3	Transforms and Partial Differential Equations	1	~	~		/						~	
	S	Biochemical Thermodynamics	7	>				1		~		~		
	Ē	Cell Biology	1					~			~			
	M		555	1143	OU	3H K	NO	MLE	VGI	~	~			
		Microbiology	~							~	~			
		Biochemistry	~							~	~			
Y		Biochemistry Laboratory							~	+	~			
e		Cell Biology and									~			
a		Microbiology Laboratory						~	~	~				
		Probability and Statistics		~	~					~			'	
2	4	Fluid Flow and Heat Transfer Operations		~						~		~		
		Industrial Enzymology		V						~	~			
	SE	Basic Industrial Biotechnology	~								~			
	M	Analytical Techniques In		~						~	~			
		Biotechnology												

		Environmental Science and Sustainability		>		~				/	~			
		Chemical Engineering Laboratory for Biotechnologists			~				~			~		
		Analytical Instrumentation Laboratory		~					~			~		
		Protein Engineering			~			~		~		~		
		Bioprocess Principles	~	/							~			
	5	Molecular Biology and Genetics	~					~				~		
	S	Professional Elective I										~		
	E M	Professional Elective II										~		
		Professional Elective III	_									~		
Y e		Bioinformatics Laboratory											✓	
a		Molecular Biology Laboratory		U	W	V		~	~	~		~		
r		Genetic Engineering and		~		~	1	~				~		
		genomics	•/											
3	6	Bioprocess Engineering	~	~						~		~		
	_	Professional Elective IV	4	1	_4			N 4				~		
	S E	Professional Elective V					٠					~		
	М	Professional Elective VI										~		
		Open Elective – I	- (FY		7				~		~	
		Bioprocess Laboratory		H				V	1		~			
		Genetic Engineering Laboratory		-	U	~			~	1		~		
		Life Skills and Soft Skills		~					V					~
	7	Elective- Management		1						~				~
V		Downstream Processing	223	V	CHI	H K	NO	A) F	DOL	~		~		
Y e	S	Immunology		~								~		
а	Ε												/	
r	M	Open Elective – III											/	
4		Open Elective – IV											'	
		Downstream Processing Laboratory		~					~	~		~		
		Immunology Laboratory				~			~	~		~		
		 				 						 	~	/
	8													
	S E M	Project Work					~		•	•				

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS COLLEGES AFFILIATED COLLEGES REGULATIONS 2021

B. TECH. BIOTECHNOLOGY

CHOICE BASED CREDIT SYSTEM

CURRICULUM FOR SEMESTERS I TO VIII AND SYLLABI FOR SEMESTERS III AND IV SEMESTER I

S. No.	COURSE	COURSE TITLE	CATE- GORY		IODS WEE	S PER K	TOTAL CONTACT	CREDITS
				L	T	Р	PERIODS	
1.	IP3151	Induction Programme	-	-	-	-	-	0
THEC	RY							
2.	HS3151	Professional English - I	HSMC	3	0	0	3	3
3.	MA3151	Matrices and Calculus	BSC	3	1	0	4	4
4.	PH3151	Engineering Physics	BSC	3	0	0	3	3
5.	CY3151	Engineering Chemistry	BSC	3	0	0	3	3
6.	GE3151	Problem Solving and Python Programming	ESC	3	0	0	3	3
7.	GE3172	அறிவியல் தமிழ் / Scientific Thoughts in Tamil	HSMC	1	0	0	1	1
PRAC	CTICALS			7				
8.	GE3171	Problem Solving and Python Programming Laboratory	ESC	0	0	4	4	2
9.	BS3171	Physics and Chemistry Laboratory	BSC	0	0	4	4	2
10.	GE3172	English Laboratory \$	EEC	0	0	2	2	1
			TOTAL	16	1	10	27	22

\$ Skill Based Course

PROGRESS THROUGH KNOWLEDGE

SEMESTER II

S.	COURSE	COURSE TITLE	CATE-		PERIO ERWE		TOTAL CONTACT	CREDITS
No.	CODE		GORY	L	Т	Р	PERIODS	
THE	DRY							
1.	HS3251	Professional English - II	HSMC	2	0	0	2	2
2.	MA3251	Statistics and Numerical Methods	BSC	3	1	0	4	4
3.	PH3252	Materials Science for Biotechnologists	PCC	3	0	0	3	3
4.	BE3252	Basic Electrical, Electronics and Instrumentation Engineering	ESC	3	0	0	3	3
5.	GE3251	Engineering Graphics	ESC	2	0	4	6	4
6.	BT3201	Bioorganic Chemistry	PCC	3	0	0	3	3
7.	GE3252	தமிழர் மரபு / Heritage of Tamils	HSMC	1	0	0	1	1
8.		NCC Credit Course Level 1*	N 1 1 1 7	2	0	0	2	2
PRAG	CTICALS	3. U	WIV	F.	. 4			
9.	GE3271	Engineering Practices Laboratory	ESC	0	0	4	4	2
10.	BT3211	Bioorganic Chemistry Laboratory	PCC	0	0	4	4	2
11.	GE3272	Communication Laboratory / Foreign Language \$	EEC	0	0	4	4	2
			TOTAL	17	1	16	36	26

#NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

\$ Skill Based Course

SEMESTER III

S. NO.	COURSE	COURSE TITLE	CATE PER GORY WEEK		TOTAL CONTACT PERIODS	CREDITS		
		pt-t-		L	Т	Р	1 LIGODO	
THE	ORY	■ PROGRESS THRO	HGHK	NO	w	ΕC	KAF II	
1.	MA3351	Transforms and Partial Differential Equations	BSC	3	1	0	4	4
2.	BT3392	Biochemistry	PCC	3	0	0	3	3
3.	BT3351	Cell Biology	PCC	3	0	0	3	3
4.	BT3352	Microbiology	PCC	3	0	0	3	3
5.	BT3301	Biochemical Thermodynamics	PCC	3	0	0	3	3
6.	BT3391	Basic Industrial Biotechnology	PCC	3	0	0	3	3
PRAG	CTICALS							
7.	BT3361	Biochemistry Laboratory	PCC	0	0	3	3	1.5
8.	BT3311	Cell and Microbiology Laboratory	PCC	0	0	3	3	1.5
9.	GE33361	Professional Development\$	EEC	0	0	2	2	1
	1	'	TOTAL	18	1	8	27	23

\$ Skill Based Course

SEMESTER IV

S. NO.	COURSE COURSE TITLE	CATE GORY	F W	RIOI PER EE	(TOTAL CONTACT PERIODS	CREDITS	
				L	T	Р	FERIODS	
THE	DRY							
1.	BT3401	Molecular Biology	PCC	3	0	0	3	3
2.	GE3451	Environmental Sciences and Sustainability	BSC	2	0	0	2	2
3.	BT3402	Fluid Flow and Heat Transfer Operations	ESC	3	0	0	3	3
4.	BT3451	Analytical Techniques In Biotechnology	PCC	3	0	0	3	3
5.	BT3491	Chemical Process Calculations in Biotechnologist	PCC	3	0	0	3	3
6.	BT3452	Industrial Enzymology	PCC	3	0	0	3	3
7.		NCC Credit Course Level 2#	11/2	3	0	0	3	3
PRAG	CTICALS			· /				
8.	BT3411	Chemical Engineering Laboratory for Biotechnologists	PCC	0	0	3	3	1.5
9.	BT3461	Analytical Instrumentation Laboratory	PCC	0	0	3	3	1.5
10.	BT3512	Industrial Training/Internship I*	EEC		-	-		-
			TOTAL	17	0	6	23	20

[#] NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

SEMESTER V

S. NO.	COURSE CODE	COURSE TITLE	CATE		ERIC R W	DS EEK P	TOTAL CONTACT PERIODS	CREDITS
THEC	DRY							
1.	BT3551	Bioprocess Principles	PCC	3	0	0	3	3
2.	BT3552	Immunology	PCC	3	0	0	3	3
3.	BT3501	Genetic Engineering	PCC	3	0	0	3	3
4.		Professional Elective I	PEC	3	0	0	3	3
5.		Professional Elective II	PEC	3	0	0	3	3
6.		Professional Elective III	PEC	3	0	0	3	3
7.		Mandatory Course-I ^{&}	MC	3	0	0	3	0
PRAC	CTICALS							
8.	BT3511	Molecular Biology & Genetic Engineering laboratory	PCC	0	0	4	4	2
9.	BT3561	Immunology Laboratory	PCC	0	0	3	3	1.5
10.	BT3512	Industrial Training/Internship I**	EEC	-	-	-	-	2
			TOTAL	18	0	7	25	23.5

^{*}Four weeks industrial training/internship carries two credits. Industrial training/internship during IV Semester Summer Vacation will be evaluated in V semester

& Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MC-I)

**Four weeks industrial training/internship carries two credits. Industrial training/internship during IV Semester Summer Vacation will be evaluated in V semester

SEMESTER VI

S.	S. COURSE NO. CODE	COURSETITE	CATE		ERIC R W	DDS EEK	TOTAL CONTACT	CREDITS
NO.	CODE		GORY		Т	Р	PERIODS	
THE	ORY							
1.	BT3601	Bioinformatics	PCC	3	0	0	3	3
2.	BT3651	Bioprocess Engineering	PCC	3	0	0	3	3
3.		Professional Elective IV	PEC	3	0	0	3	3
4.		Professional Elective V	PEC	3	0	0	3	3
5.		Open Elective – I*	OEC	3	0	0	3	3
6.		Mandatory CourseII&	MC	3	0	0	3	0
7.		NCC Credit Course Level 3#		3	0	0	3	3
PRAG	CTICALS							
8.	BT3611	Bioinformatics Lab	PCC	0	0	3	3	1.5
9.	BT3661	Bioprocess Laboratory	PCC	0	0	3	3	1.5
10.	BT3711	Industrial Training/Internship II**	EEC		70	Y	3.	-
		(3)	TOTAL	18	0	6	24	18

^{*}Open Elective – I shall be chosen from the emerging technologies.

SEMESTER VII/VIII*

S. NO.	COURSE	COURSE TITLE	CATE GORY		RIOI R WE	EK	TOTAL CONTACT	CREDITS
				L	T	Р	PERIODS	
THE	ORY							
1.	BT3751	Downstream Processing	PCC	3	0	0	3	3
2.	GE3791	Human values and Ethics	HSMC	2	0	0	2	2
3.		Management Elective#	HSMC	3	0	0	3	3
4.		Professional Elective VI	PEC	3	0	0	3	3
5.		Open Elective – II**	OEC	3	0	0	3	3
6.		Open Elective – III***	OEC	3	0	0	3	3
7.		Open Elective – IV***	OEC	3	0	0	3	3
PRA	CTICALS							
8.	BT3761	Downstream Laboratory	PCC	0	0	3	3	1.5
9.	BT3711	Industrial Training/Internship II##	EEC	-	-	-	-	2
	l	· · · · · · · · · · · · · · · · · · ·	TOTAL	20	0	3	23	23.5

^{*}If students undergo internship in Semester VII, then the courses offered during semester VIII will be offered during semester VIII.

^{**}Two weeks industrial training/internship carries one credit. Industrial training/Internship during VI Semester Summer Vacation will be evaluated in VII semester

[&] Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under MC-II)

^{*} NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

^{**}Open Elective - II shall be chosen from the emerging technologies.

^{***}Open Elective III and IV (Shall be chosen from the list of open electives offered by other Programmes

[#] Elective- Management shall be chosen from the Elective Management courses

^{##}Two weeks industrial training/internship carries one credit. Industrial training/Internship during VI Semester Summer Vacation will be evaluated in VII semester

SEMESTER VIII/VII*

S.	COURSE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	T	Р	PERIODS	
PRA	CTICALS							
1.	BT3811	Internship#/ Project Work	EEC	0	0	20	20	10
			TOTAL	0	0	20	20	10

^{*}If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

#15 weeks of continuous Internship in an organization carries 10 credits.

TOTAL CREDITS: 166

ELECTIVE - MANAGEMENT COURSES

SL. NO.	COURSE CODE	COURSE TITLE	CATE		RIOI RWI	DS EEK	TOTAL CONTACT	CREDITS
NO.			GUKT	L	Т	Р	PERIODS	
1.	GE3751	Principles of Management	HSMC	3	0	0	3	3
2.	GE3752	Total Quality Management	HSMC	3	0	0	3	3
3.	GE3753	Engineering Economics and Financial Accounting	HSMC	3	0	0	3	3
4.	GE3754	Human Resource Management	HSMC	3	0	0	3	3
5.	GE3755	Knowledge Management	HSMC	3	0	0	3	3
6.	GE3792	Industrial Management	HSMC	3	0	0	3	3

MANDATORY COURSES I

SL. NO	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
			GORT	L	Т	P	PERIODS	
1.	MX3081	Introduction to Women and Gender Studies	MC	3	0	0	3	0
2.	MX3082	Elements of Literature	MC	3	0	0	3	0
3.	MX3083	Film Appreciation	MC	3	0	0	3	0
4.	MX3084	Disaster Management	MC	3	0	0	3	0

MANDATORY COURSES II

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		RIOI R W	OS EEK	TOTAL CONTACT	CREDITS
NO.			L I P PERIO		PERIODS			
1.	MX3085	Well Being with traditional practices (Yoga, Ayurveda and Siddha)	MC	3	0	0	3	0
2.	MX3086	History of Science and Technology in India	MC	3	0	0	3	0
3.	MX3087	Political and Economic Thought for a Humane Society	MC	3	0	0	3	0
4.	MX3088	State, Nation Building and Politics in India	MC	3	0	0	3	0
5.	MX3089	Industrial Safety	MC	3	0	0	3	0

PROFESSIONAL ELECTIVE COURSES: VERTICALS

Vertical I	Vertical II	Vertical III	Vertical IV	Vertical V	Vertical VI	Vertical VII	Vertical VIII
Bioprocess Technology	Biosciences	Medical Biotechnology	Bio Chemical Engineering	Animal Biotechnology	Computational Biotechnology	Quality and Regulatory Affairs	Agro Biotechnolog y
Bioprocess Control and Instrumentation	Biosensors	Human Genetics	Mass Transfer Operations	Fundamentals of Animal Biotechnology	Programming for Bioinformatics Applications	Clinical Trials and Health care policies in Biotechnology	Plant anatomy
Fermentation Technology (Shifted from Vertical IV to Vertical I)	Bio- Nanotechnology	Cancer Biology	Transport Phenomena in Biological System (Shifted from Vertical I to Vertical IV)	Animal Health and Nutrition	Fundamentals of Algorithms for Bioinformatics	Biotechnological products and its validation	Therapeutic application of phytochemical s
Food Processing and Technology	Stem Cell Technology	Biopharmaceutica Is and Biosimilars	Bioenergy and Biofuels	Animal Physiology and Metabolism	Molecular Modelling	Quality assurance and quality control in Biotechnology	Bio-fertilizer production & mushroom cultivation
Bioreactor Design and Scale up process	Biomaterials	Tissue Engineering	Environmental Biotechnology	Animal Cell Culture Technology	Computer Aided Drug Design	Entrepreneurship and patent design	Biotechnologic al approach in crop improvement
Bioprocess Modelling and Simulation	Protein Engineering	Molecular Therapeutics and Diagnostics	Applied Chemical Reaction Engineering (Newly added)	Advances in Animal Biotechnology	Metabolomics and Metabolic Engineering	Intellectual property rights in Biotechnology	Advance techniques in agro forestry
Bioreactor Consideration for Recombinant Products	Modern Bio analytical Techniques	Biomedical Engineering	Petroleum Biotechnology	Biotechniques in Animal Breeding	Data Mining And Machine Learning Techniques For Bioinformatics	Biosafety and Hazard Management	Plant tissue culture & transformation techniques

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V and VI. These courses are listed in groups called verticals that represent a particular area of specialisation. Students are permitted to choose all Professional Electives from a particular vertical or from different verticals. Further, only one Professional Elective course shall be chosen in a semester horizontally (row-wise). However, two courses are permitted from the same row, provided one course is enrolled in Semester V and another in semester VI.

The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E/B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree refer to Regulations 2021 Clause 4.10.

.

PROFESSIONAL ELECTIVE COURSES: VERTICALS VERTICAL I: BIOPROCESS TECHNOLOGY

SL. NO.	COURSE	COURSE TITLE	CATE GORY		PERIODS PER WEEK		TOTAL CONTACT PERIODS	CREDITS
		1 1	NIL	L	, T	Р	1 EKIODO	
1.	BT3001	Bioprocess Control and Instrumentation	PEC	3	0	0	3	3
2.	BT3002	Fermentation Technology	PEC	3	0	0	3	3
3.	BT3003	Food Processing and Technology	PEC	3	0	0	3	3
4.	BT3004	Bioreactor Design and Scale up process	PEC	3	0	0	3	3
5.	CBT331	Bioprocess Modelling and Simulation	PEC	3	0	0	3	3
6.	BT3005	Bioreactor Consideration for Recombinant Products	PEC	3	0	0	3	3

VERTICAL II: BIOSCIENCES

SL. NO.	COURSE	COURSE TITLE	CATE GORY		PEF WEE	2	TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р	PERIODS	
1.	BT3006	Biosensors	PEC	3	0	0	3	3
2.	BT3007	Bio-Nanotechnology	PEC	3	0	0	3	3
3.	BT3008	Stem Cell Technology	PEC	3	0	0	3	3
4.	BT3009	Biomaterials	PEC	3	0	0	3	3
5.	BT3010	Protein Engineering	PEC	3	0	0	3	3
6.	BT3011	Modern Bio analytical Techniques	PEC	3	0	0	3	3

VERTICAL III: MEDICAL BIOTECHNOLOGY

SL. NO.	COURSE	COURSE TITLE	CATE GORY		PEF WEE	₹	TOTAL CONTACT PERIODS	CREDITS
				L	T	Р	PERIODS	
1.	BT3012	Human Genetics	PEC	3	0	0	3	3
2.	CBT372	Cancer Biology	PEC	3	0	0	3	3
3.	BT3013	Biopharmaceuticals and Biosimilars	PEC	3	0	0	3	3
4.	CBT333	Tissue Engineering	PEC	3	0	0	3	3
5.	BT3014	Molecular Therapeutics and Diagnostics	PEC	3	0	0	3	3
6.	BT3015	Biomedical Engineering	PEC	3	0	0	3	3

VERTICAL IV: BIO CHEMICAL ENGINEERING

SL. NO.	COURSE	COURSE TITLE	CATE GORY		PEI VEE	₹	TOTAL CONTACT PERIODS	CREDITS
		1 1 1 3		÷	Т	Р	1 EKIODO	
1.	BT3016	Mass Transfer Operations	PEC	3	0	0	3	3
2.	BT3017	Transport Phenomena in Biological System	PEC	3	0	0	3	3
3.	BT3018	Bioenergy and Biofuels	PEC	3	0	0		3
4.	BT3019	Environmental Biotechnology	PEC	3	0	0	3	3
5.	BT3020	Applied Chemical Reaction Engineering	PEC	3	0	0	3	3
6.	BT3021	Petroleum Biotechnology	PEC	3	0	0	3	3

VERTICAL V: ANIMAL BIOTECHNOLOGY

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		PEF WEE	₹	TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р	PERIODS	
1.	BT3022	Fundamentals of Animal Biotechnology	PEC	3	0	0	3	3
2.	BT3023	Animal Health and Nutrition	PEC	3	0	0	3	3
3.	BT3024	Animal Physiology and Metabolism	PEC	3	0	0	3	3
4.	BT3025	Animal Cell Culture Technology	PEC	3	0	0	3	3
5.	BT3026	Advances in Animal Biotechnology	PEC	3	0	0	3	3
6.	BT3027	Biotechniques in Animal Breeding	PEC	3	0	0	3	3

VERTICAL VI: COMPUTATIONAL BIOTECHNOLOGY

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		PER WEE	₹ .	TOTAL CONTACT PERIODS	CREDITS
1.	BT3028	Programming for Bioinformatics Applications	PEC	3	0	0	3	3
2.	BT3029	Fundamentals of Algorithms for Bioinformatics	PEC	3	0	0	3	3
3.	BT3030	Molecular Modelling	PEC	2	1	0	3	3
4.	CPY331	Computer Aided Drug Design	PEC	3	0	0	3	3
5.	BT3031	Metabolomics and Metabolic Engineering	PEC ROUG	3	0	0	EDGE 3	3
6.	BT3032	Data Mining And Machine Learning Techniques For Bioinformatics	PEC	3	0	0	3	3

VERTICAL VII: QUALITY AND REGULATORY AFFAIRS

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		PERIOD PER WEEK		TOTAL CONTACT PERIODS	CREDITS
				L	T	Р	PERIODS	
1.	BT3033	Clinical Trials and Health care policies in Biotechnology	PEC	3	0	0	3	3
2.	BT3034	Biotechnological products and its validation	PEC	3	0	0	3	3
3.	BT3035	Quality assurance and quality control in Biotechnology	PEC	3	0	0	3	3
4.	BT3036	Entrepreneurship and patent design	PEC	3	0	0	3	3
5.	BT3037	Intellectual property rights in Biotechnology	PEC	3	0	0	3	3
6.	BT3038	Biosafety and Hazard Management	PEC	3	0	0	3	3

VERTICAL VIII: AGRO BIOTECHNOLOGY

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	Ξ.	PEI WEE	₹ .	TOTAL CONTACT PERIODS	CREDITS
	4			L	T	Р	FERIOD3	
1.	BT3039	Plant anatomy	PEC	3	0	0	3	3
2.	BT3040	Therapeutic application of phytochemicals	PEC	3	0	0	3	3
3.	BT3041	Bio-fertilizer production & mushroom cultivation	PEC	3	0	0	3	3
4.	BT3042	Biotechnological approach in crop improvement	PEC	3	0	0	3	3
5.	BT3043	Advance techniques in agro forestry	PEC	3	0	0	3	3
6.	BT3044	Plant tissue culture & transformation techniques	PEC	3	0	0	3	3

OPEN ELECTIVES

Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories.

OPEN ELECTIVE I AND II (EMERGING TECHNOLOGIES)

To be offered other than Faculty of Information and Communication Engineering

SL. NO.	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
140.			GOICI	L	T	Ρ	PERIODS	
1.	OCS351	Artificial Intelligence and Machine Learning Fundamentals	OEC	2	0	2	4	3
2.	OCS352	loT Concepts and Applications	OEC	2	0	2	4	3
3.	OCS353	Data Science Fundamentals	OEC	2	0	2	4	3
4.	OCS354	Augmented and Virtual Reality	OEC	2	0	2	4	3

OPEN ELECTIVES - III

								I
SL. NO.	COURSE	COURSE TITLE	CATE		ERIOI R WE		TOTAL CONTACT	CREDITS
NO.			GORY	L	Т	Р	PERIODS	
1.	OHS351	English for Competitive Examinations	OEC	3	0	0	3	3
2.	OCE353	Lean Concepts, Tools And Practices	OEC	3	0	0	3	3
3.	OMG352	NGOs and Sustainable Development	OEC	3	0	0	3	3
4.	OMG353	Democracy and Good Governance	OEC	3	0	0	3	3
5.	OME353	Renewable Energy Technologies	OEC	3	0	0	3	3
6.	OME354	Applied Design Thinking	OEC	2	0	2	4	3
7.	OMF351	Reverse Engineering	OEC	3	0	0	3	3
8.	OMF353	Sustainable Manufacturing	OEC	3	0	0	3	3
9.	OAU351	Electric and Hybrid Vehicle	OEC	3	0	0	3	3
10.	OAS352	Space Engineering	OEC	3	0	0	3	3
11.	OIM351	Industrial Management	OEC	3	0	0	3	3
12.	OIE354	Quality Engineering	OEC	3	0	0	3	3
13.	OSF351	Fire Safety	OEC	3	0	0	3	3

		Engineering						
14.	OML351	Introduction to non-	OEC	3	0	0	3	3
17.	OWIEGO I	destructive testing	020					
15.	OMR351	Mechatronics	OEC	3	0	0	3	3
16.	ORA351	Foundation of	OEC	3	0	0	3	3
10.	0101001	Robotics	010				J	
17.	OAE352	Fundamentals of	OEC	3	0	0	3	3
		Aeronautical						
		engineering						
18.	OGI351	Remote Sensing	OEC	3	0	0	3	3
		Concepts			_	_	_	_
19.	OAI351	Urban Agriculture	OEC	3	0	0	3	3
20.	OEN351	Drinking Water Supply and Treatment	OEC	3	0	0	3	3
21.	OEE352	Electric Vehicle	OEC	3	0	0	3	3
		technology						
22.	OEI353	Introduction to PLC	OEC	3	0	0	3	3
		Programming						
23.	OCH351	Nano Technology	OEC	3	0	0	3	3
24.	OCH352	Functional Materials	OEC	3	0	0	3	3
25.	OPY352	IPR for Pharma	OEC	3	0	0	3	3
		Industry				1	1	
26.	OTT351	Basics of Textile	OEC	3	0	0	3	3
		Finishing	4 4				/ 1	
27.	OTT352	Industrial Engineering	OEC	3	0	0	3	3
	077070	for Garment Industry	050					
28.	OTT353	Basics of Textile	OEC	3	0	0	3	3
- 00	ODEOGA	Manufacture	050	2	_	0	2	
29.	OPE351	Introduction to	OEC	3	0	0	3	3
		Petroleum Refining and Petrochemicals		F /			- Co.	
30.	OPE352	Energy Conservation	OEC	3	0	0	3	3
30.	OI L332	and Management	OLC	3	U		3	
31.	OPT351	Basics of Plastics	OEC	3	0	0	3	3
31.	01 1001	Processing	020					
32.	OEC351	Signals and Systems	OEC	3	0	0	3	3
		PRINIFISSIF					YUE I	
33.	OEC352	Fundamentals of	OEC	3	0	0	3	3
		Electronic Devices and Circuits						
34.	OBM351	Foundation Skills in	OEC	3	0	0	3	3
54.	ODIVIOOT	integrated product	OLO				3	
		Development						
35.	OBM352	Assistive Technology	OEC	3	0	0	3	3
36.	OMA352	Operations Research	OEC	3	0	0	3	3
37.	OMA353	Algebra and Number	OEC	3	0	0	3	3
<i>37</i> .		Theory						
38.	OMA354	Linear Algebra	OEC	3	0	0	3	3

OPEN ELECTIVES – IV

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
				L	Т	Р	PERIODS	
1.	OHS352	Project Report Writing	OEC	3	0	0	3	3
2.	OCE354	Basics of Integrated Water Resources Management	OEC	3	0	0	3	3
3.	OMA355	Advanced Numerical Methods	OEC	3	0	0	3	3
4.	OMA356	Random Processes	OEC	3	0	0	3	3
5.	OMA357	Queuing and Reliability Modelling	OEC	3	0	0	3	3
6.	OMG354	Production and Operations Management for Entrepreneurs	OEC	3	0	0	3	3
7.	OMG355	Multivariate Data Analysis	OEC	3	0	0	3	3
8.	OME352	Additive Manufacturing	OEC	3	0	0	3	3
9.	OME353	New Product Development	OEC	3	0	0	3	3
10.	OME355	Industrial Design & Rapid Prototyping Techniques	OEC	2	0	2	4	3
11.	OMF352	Micro and Precision Engineering	OEC	3	0	0	3	3
12.	OMF354	Cost Management of Engineering Projects	OEC	3	0	0	3	3
13.	OAU352	Batteries and Management system	OEC	3	0	0	3	3
14.	OAU353	Sensors and Actuators	OEC	3	0	0	3	3
15.	OAS353	Space Vehicles	OEC	3	0	0	3	3
16.	OIM352	Management Science	OEC	3	0	0	3	3
17.	OIM353	Production Planning and Control	OEC	3	0	0	DGE ³	3
18.	OIE353	Operations Management	OEC	3	0	0	3	3
19.	OSF352	Industrial Hygiene	OEC	3	0	0	3	3
20.	OSF353	Chemical Process Safety	OEC	3	0	0	3	3
21.	OML352	Electrical, Electronic and Magnetic materials	OEC	3	0	0	3	3
22.	OML353	Nanomaterials and applications	OEC	3	0	0	3	3
23.	OMR353	Sensors	OEC	3	0	0	3	3
24.	ORA352	Foundation of Automation	OEC	3	0	0	3	3
25.	ORA353	Concepts in Mobile	OEC	3	0	0	3	3

		Robotics						
26.	OMV351	Marine Propulsion	OEC	3	0	0	3	3
27.	OMV352	Marine Merchant Vehicles	OEC	3	0	0	3	3
28.	OMV353	Elements of Marine Engineering	OEC	3	0	0	3	3
29.	OAE353	Drone Technologies	OEC	3	0	0	3	3
30.	OGI352	Geographical Information System	OEC	3	0	0	3	3
31.	OAI352	Agriculture Entrepreneurship Development	OEC	3	0	0	3	3
32.	OEE353	Introduction to control systems	OEC	3	0	0	3	3
33.	OCH353	Energy Technology	OEC	3	0	0	3	3
34.	OCH354	Surface Science	OEC	3	0	0	3	3
35.	OEI354	Introduction to Industrial Automation Systems	OEC	3	0	0	3	3
36.	OTT354	Basics of Dyeing and Printing	OEC	3	0	0	3	3
37.	OTT355	Fibre Science	OEC	3	0	0	3	3
38.	OTT356	Garment Manufacturing Technology	OEC	3	0	0	3	3
39.	OPE353	Industrial safety	OEC	3	0	0	3	3
40.	OPE354	Unit Operations in Petro Chemical Industries	OEC	3	0	0	3	3
41.	OPT352	Plastic Materials for Engineers	OEC	3	0	0	3	3
42.	OPT353	Properties and Testing of Plastics	OEC	3	0	0	3	3
43.	OEC353	VLSI Design	OEC	3	0	0	3	3
44.	OEC354	Industrial IoT and Industry 4.0	OEC	2	0	2	4 n c F	3
45.	OBM353	Wearable devices	OEC	3	0	0	3	3
46.	OBM354	Medical Informatics	OEC	3	0	0	3	3

SUMMARY

	Name of the Programme									
S.No	Subject Area		Credits per Semester						Total Credits	
		I	II	III	IV	V	VI	VII/VIII	VIII/VII	Ciedits
1	HSMC	4	3					5		12
2	BSC	12	4	4	2					22
3	ESC	5	9	100	3					17
4	PCC		8	18	15	12.5	9	4.5		67
5	PEC	-		4 0 1 1	17.	9	6	3		18
6	OEC			DIA	VE	7.5	3	9		12
7	EEC	1	2	1	7700	2		2	10	18
8	Non-Credit /(Mandatory)	AN	4	44		٧	V			
	Total	22	26	23	20	23.5	18	23.5	10	166

PROGRESS THROUGH KNOWLEDGE

Enrollment for B.E. / B. Tech. (Honours) / Minor degree (Optional)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E./B.Tech. (Honours) Minor degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 of Regulations 2021.

<u>Verticals FOR MINOR DEGREE (IN ADDITIONS TO ALL THE VERTICALS OF OTHER PROGRAMMES)</u>

			\/au4!! !\/	T
Vertical I Fintech and Block Chain	Vertical II Entrepreneurship	Vertical III Public Administration	Vertical IV Business Data Analytics	Vertical V Environment and Sustainability
Financial Management	Foundations of Entrepreneruship	Principles of Public Administration	Statistics For Management	Sustainable infrastructure Development
Fundamentals of Investment	Team Building & Leadership Management for Business	Constitution of India	Datamining For Business Intelligence	Sustainable Agriculture and Environmental Management
Banking, Financial Services and Insurance	Creativity & Innovation in Entrepreneurship	Public Personnel Administration	Human Resource Analytics	Sustainable Bio Materials
Introduction to Blockchain and its Applications	Principles of Marketing Management For Business	Administrative Theories	Marketing And Social Media Web Analytics	Materials for Energy Sustainability
Fintech Personal Finance and Payments	Human Resource Management for Entrepreneurs	Indian Administrative System	Operation And Supply Chain Analytics	Green Technology
Introduction to Fintech	Financing New Business Ventures	Public Policy Administration	Financial Analytics	Environmental Quality Monitoring and Analysis
-	-	-	-	Integrated Energy Planning for Sustainable Development
-	-	-	-	Energy Efficiency for Sustainable Development

(Choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

VERTICAL 1: FINTECH AND BLOCK CHAIN

SL N	COURSE	COURSE TITLE	CATE PER GORY WEEK		PER TOTAL CONTACT PERIODS		CONTACT	CREDITS
Ο.				L	T	Р	FERIOD3	
1.	CMG331	Financial Management	PEC	3	0	0	3	3
2.	CMG332	Fundamentals of Investment	PEC	3	0	0	3	3
3.	CMG333	Banking, Financial Services and Insurance	PEC	3	0	0	3	3
4.	CMG334	Introduction to Blockchain and its Applications	PEC	3	0	0	3	3
5.	CMG335	Fintech Personal Finance and Payments	PEC	3	0	0	3	3
6.	CMG336	Introduction to Fintech	PEC	3	0	0	3	3

VERTICAL 2: ENTREPRENEURSHIP

SL. NO.	COURSE	COURSE TITLE	CATE GORY		PEI WEE		TOTAL CONTACT PERIODS	CREDITS
1.	CMG337	Foundations of Entrepreneruship	PEC	3	0	0	3	3
2.	CMG338	Team Building & Leadership Management for Business	PEC	3	0	0	3	3
3.	CMG339	Creativity & Innovation in Entrepreneurship	PEC	3	0	0	-3	3
4.	CMG340	Principles of Marketing Management For Business	PEC	3	0	0	3	3
5.	CMG341	Human Resource Management for Entrepreneurs	PEC	3	0	0	3	3
6.	CMG342	Financing New Business Ventures	PEC	3	0	0	3	3

VERTICAL 3: PUBLIC ADMINISTRATION

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		ERIC PEI WEE	₹	TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р	PERIOD3	
1.	CMG343	Principles of Public Administration	PEC	3	0	0	3	3
2.	CMG344	Constitution of India	PEC	3	0	0	3	3
3.	CMG345	Public Personnel Administration	PEC	3	0	0	3	3
4.	CMG346	Administrative Theories	PEC	3	0	0	3	3
5.	CMG347	Indian Administrative System	PEC	3	0	0	3	3
6.	CMG348	Public Policy Administration	PEC	3	0	0	3	3

VERTICAL 4: BUSINESS DATA ANALYTICS

		7.57				Y.		
SL. NO.	COURSE	COURSE TITLE	CATE GORY			₹	TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р	PERIODS	
1.	CMG349	Statistics For Management	PEC	3	0	0	3	3
2.	CMG350	Datamining For Business Intelligence	PEC	3	0	0	3	3
3.	CMG351	Human Resource Analytics	PEC	3	0	0	3	3
4.	CMG352	Marketing And Social Media Web Analytics	PEC	3	0	0	3	3
5.	CMG353	Operation And Supply Chain Analytics	PEC	3	0	0	3	3
6.	CMG354	Financial Analytics	PEC	3	0	0	3	3

VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY

SL. NO.	COURSE	COURSE TITLE	CATE GORY	WEEK		EK TOTAL CONTACT		CREDITS
				L	T	Р	1 LIGODO	
1.	CES331	Sustainable infrastructure Development	PEC	3	0	0	3	3
2.	CES332	Sustainable Agriculture and Environmental Management	PEC	3	0	0	3	3
3.	CES333	Sustainable Bio Materials	PEC	3	0	0	3	3
4.	CES334	Materials for Energy Sustainability	PEC	3	0	0	3	3
5.	CES335	Green Technology	PEC	3	0	0	3	3
6.	CES336	Environmental Quality Monitoring and Analysis	PEC	3	0	0	3	3
7.	CES337	Integrated Energy Planning for Sustainable Development	PEC	3	0	0	3	3
8.	CES338	Energy Efficiency for Sustainable Development	PEC	3	0	0	3	3

PROGRESS THROUGH KNOWLEDGE

MA3351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

L T P C 3 1 0 4

OBJECTIVES

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

9 + 3

Formation of partial differential equations –Solutions of standard types of first order partial differential equations - First order partial differential equations reducible to standard types-Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

9 + 3

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series and cosine series – Root mean square value – Parseval's identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+3

Classification of PDE – Method of separation of variables - Fourier series solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (Cartesian coordinates only).

UNIT IV FOURIER TRANSFORMS

9 + 3

Statement of Fourier integral theorem— Fourier transform pair — Fourier sine and cosine transforms — Properties — Transforms of simple functions — Convolution theorem — Parseval's identity.

UNIT V Z-TRANSFORMS AND DIFFERENCE EQUATIONS

9 + 3

Z-transforms - Elementary properties - Convergence of Z-transforms - - Initial and final value theorems - Inverse Z-transform using partial fraction and convolution theorem - Formation of difference equations - Solution of difference equations using Z - transforms.

TOTAL: 60 PERIODS

OUTCOMES

Upon successful completion of the course, students should be able to:

- Understand how to solve the given standard partial differential equations.
- Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.
- Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.
- Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

TEXT BOOKS:

- 1. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, New Delhi, 2018.
- 2. Kreyszig E, "Advanced Engineering Mathematics ", 10th Edition, John Wiley, New Delhi, India, 2016.

REFERENCES:

- 1. Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 10th Edition, Laxmi Publications Pvt. Ltd, 2015.
- 3. James. G., "Advanced Modern Engineering Mathematics", 4thEdition, Pearson Education, New Delhi. 2016.
- 4. Narayanan. S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2018.
- 6. Wylie. R.C. and Barrett . L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

BT3392 BIOCHEMISTRY

LTPC

3 0 0 3

OBJECTIVE

To enable students learn the fundamentals of Biochemical Processes and Biomolecules

UNIT I INTRODUCTION TO BIOMOLECULES - CARBOHYDRATES:

9

Basic principles of organic chemistry, role of carbon, types of functional groups, chemical, nature of water, pH and biological buffers, bio molecules structure and properties of Carbohydrates (mono, di, oligo & polysaccharides) Proteoglycans, glucosaminoglycans. mutarotation, glycosidic bond, reactions of monosaccharides, reducing sugars. Starch, glycogen, cellulose and chitin. Proteoglycans, glycosaminoglycans. hyaluronic acid, chondroitin sulfate

UNIT II STRUCTURE AND PROPERTIES OF OTHER BIOMOLECULES

9

Structure and properties of Important Biomolecules.

Lipids: fatty acids, glycerol, saponification, iodination, hydrogenation, phospholipids, glycolipids, sphingolipids, cholesterol, steroids, prostaglandins.

Protein: Amino Acids, Peptides, Proteins, measurement, structures, hierarchy of organization primary, secondary, tertiary and quaternary structures, glycoproteins, lipoproteins. Determine of primary structure.

Nucleic acids: purines, pyrimidines, nucleoside, nucleotide, RNA, DNA-Watson-Crick structure of DNA, reactions, properties, measurement, nucleoprotein complexes

UNIT III METABOLISM CONCEPTS AND CARBOHYDRATE METABOLISM 9

Functions of Proteins, Enzymes, introduction to biocatalysts, metabolic pathways, primary and secondary metabolites. Interconnection of pathways and metabolic regulation. Glycolysis, TCA cycle, gluconeogenesis, pentose phosphate shunt & glyoxalate shunt.

UNIT IV INTERMEDIARY METABOLISM AND REGULATION

9

Fatty acid synthesis and oxidation, reactions of amino acids, deamination, transamination and

decarboxylation, urea cycle, Bioenergetics - High energy compounds, electronegative potential of compounds, respiratory chain, ATP cycle, calculation of ATP yield during oxidation of glucose and fatty acids.

UNIT V PROTEIN TRANSPORT AND DEGRADATION

Protein targeting, signal sequence, secretion; Folding, Chaperone and targeting of organelle proteins. Protein degradation, receptor-mediated endocytosis, turnover.

TOTAL: 45 PERIODS

OUTCOMES

- To ensure students have a strong foundation in the structure and reactions of Biomolecules.
- To introduce them to metabolic pathways of the major biomolecules and relevance to clinical conditions.
- To correlate Biochemical processes with Biotechnology applications.

TEXT BOOKS

- 1. Lehninger Principles of Biochemistry 6th Edition by David L. Nelson, Michael M. Cox W.H.Freeman and Company 2017
- 2. Satyanarayana, U. and U. Chakerapani, "Biochemistry" 3rd Rev. Edition, Books & Allied (P) Ltd., 2006.
- 3. Rastogi, S.C. "Biochemistry" 2nd Edition, Tata McGraw-Hill, 2003.
- 4. Conn, E.E., etal., "Outlines of Biochemistry" 5th Edition, John Wiley & Sons, 1987.
- 5. Outlines of Biochemistry, 5th Edition: By E E Conn, P K Stumpf, G Bruening and R Y Doi. pp 693. John Wiley and Sons, New York. 1987.

REFERENCES

- 1. Berg, Jeremy M. et al. "Biochemsitry", 6th Edition, W.H. Freeman & Co., 2006.
- 2. Murray, R.K., etal "Harper's Illustrated Biochemistry", 31st Edition, McGraw-Hill, 2018.
- 3. Voet, D. and Voet, J.G., "Biochemistry", 4th Edition, John Wiley & Sons Inc., 2010.

CELL BIOLOGY BT3351

LTPC 3 0 0 3

OBJECTIVES:

- To provide knowledge on the fundamentals of cell biology
- To help students understand the signalling mechanisms

UNIT I CELL STRUCTURE AND FUNCTION OF THE ORGANELLES

Prokaryotic, Eukaryotic cells, Sub-cellular organelles and functions. Principles of membrane organization membrane proteins, cytoskeletal proteins. Extra cellular matrix, cell-cell junctions.

UNIT II **CELL DIVISION, CANCER, APOPTOSIS AND IMMORTALIZATION OF CELLS 9** Cell cycle - Mitosis, Meiosis, Molecules controlling cell cycle, cancer, role of Ras and Raf in oncogenesis and apoptosis. Stem cells, Cell culture and immortalization of cells and its applications.

UNIT III TRANSPORT ACROSS CELL MEMBRANE

Passive and Active Transport, Permeases, Ion channels, ATP pumps. Na+ / K+ /Ca+2Tpumps, uniport, symport antiporter system. Ligand gated / voltage gated channels, Agonists and Antagonists.

UNIT IV SIGNAL TRANSDUCTION

9

Receptors – extracellular signaling, Cell surface / cytosolic receptors and examples, Differentclasses of receptors antocrine / paracrine / endocrine models, Secondary messengers molecules.

UNIT V TECHNIQUES USED TO STUDY CELLS

9

TOTAL: 45 PERIODS

Cell fractionation and flow cytometry, Morphology and identification of cells using microscopic studies like SEM, TEM and Confocal Microscopy. Localization of proteins in cells – Immunostaining.

OUTCOMES:

Upon completion of this course, the students

- Would have deeper understanding of cell at structural and functional level.
- Would have broad knowledge on the molecular interaction between cells.
- Would demonstrate a clear understanding of the signal transduction, secondary
- messengers.
- Would develop skill on working principles of microscopy and identification of cell types.

TEXT BOOKS:

- 1. Lodish, Harvey etal., "Molecular Cell Biology", 7th Edition, W.H.Freeman, 2013.
- 2. Cooper, G.M. and R.E. Hansman "The Cell: A Molecular Approach", 8th Edition, Oxford University Press, 2018.
- 3. Alberts, Bruce etal., "Molecular Biology of the Cell", 6th Edition, W.W. Norton, 2014
- 4. Sadava, D.E. "Cell Biology: Organelle Structure and Function", Panima Publishing, 2004.
- 5. Rastogi, S.C. "Cell Biology" 2nd Edition, New Age International, 2017

REFERENCES:

- 1. Becker, W.M. etal., "The World of the Cell", 9th Edition, Pearson Education, 2003.
- 2. Campbell, N.A., J.B. Recee and E.J. Simon "Essential Biology", VIIrd Edition, Pearson International, 2007.
- 3. Alberts, Bruce etal., "Essential Cell Biology", 4th Edition, W.W. Norton, 2013

BT3352 MICROBIOLOGY

LTPC 3003

OBJECTIVES

- To introduce students to the principles of Microbiology to emphasize structure and biochemical aspects of various microbes.
- To solve the problems in microbial infection and their control.

UNIT I: INTRODUCTION

Basics of microbial existence; history of microbiology, classification and nomenclature of microorganisms, microscopic examination of microorganisms, light and electron microscopy; principles of different staining techniques like gram staining, acid fast, capsular staining, flagellar staining.

UNIT II: MICROBES- STRUCTURE AND MULTIPLICATION

9

Structural organization and multiplication of bacteria, viruses, algae and fungi, with special mention of life history of actinomycetes, yeast, mycoplasma and bacteriophages.

UNIT III: MICROBIAL NUTRITION, GROWTH AND METABOLISM

9

Nutritional requirements of bacteria; different media used for bacterial culture; growth

curve and different methods to quantify bacterial growth; aerobic and anaerobic bioenergetics and utilization of energy for biosynthesis of important molecules.

UNIT IV: CONTROL OF MICROORGANISMS

9

Physical and chemical control of microorganisms; host-microbe interactions; anti-bacterial, anti-fungal and anti-viral agents; mode of action and resistance to antibiotics; clinically important microorganisms.

UNIT V: INDUSTRIAL AND ENVIRONMENTAL MICROBIOLOGY

9

Primary metabolites; secondary metabolites and their applications; preservation of food; production of penicillin, alcohol, vitamin B-12; biogas; bioremediation; leaching of ores by microorganisms; biofertilizers and biopesticides; microorganisms and pollution control; biosensors

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Pelczar MJ, Chan ECS and Krein NR, Microbiology, Tata McGraw Hill Edition, New Delhi, India,2009
- 2. Prescott L.M., Harley J.P., Klein DA, Microbiology, 3rd Edition, Wm. C. Brown Publishers, 1996.

REFERENCE BOOKS

- 1. Black, Text book of microbiology. Freeman Publishers, 2016
- 2. Talaron K, Talaron A, Casita, Pelczar and Reid. Foundations in Microbiology, W.C. Brown Publishers, 1993.
- **3.** Ananthanarayan, CK Jayaram Panikars. Text book of Microbiology, 2005, Orient Blackswan Publishers.

BT3301

BIOCHEMICAL THERMODYNAMICS

L T P C 3 0 0 3

OBJECTIVE:

 To enable the students to learn about basic concepts of classical and statistical thermodynamics

UNIT I THERMODYNAMIC LAW AND PROPERTIES OF FLUIDS

First Law of thermodynamics, a generalized balance equation and conserved quantities, Volumetric properties of fluids exhibiting non ideal behavior; residual properties; estimation of thermodynamic properties using equations of state; calculations involving actual property exchanges; Maxwell's relations and applications.

UNIT II SOLUTION THERMODYNAMICS

9

9

Partial molar properties; concepts of chemical potential and fugacity; ideal and non-ideal solutions; concepts and applications of excess properties of mixtures; activity coefficient; composition models; Gibbs Duhem equation.

UNIT III PHASE EQUILIBRIA

9

Criteria for phase equilibria; VLE calculations for binary and multi component systems; liquid-liquid equilibria and solid-solid equilibria.

UNIT IV CHEMICAL REACTION EQUILIBRIA

9

Equilibrium criteria for homogeneous chemical reactions; evaluation of equilibrium constant; effect of temperature and pressure on equilibrium constant; calculation of equilibrium conversion and yields for single and multiple reactions.

UNIT V: THERMODYNAMIC DESCRIPTION OF MICROBIAL GROWTH AND PRODUCT 9 FORMATION

Thermodynamics of microbial growth stoichiometry thermodynamics of maintenance, Calculation of the Operational Stoichiometry of a growth process at Different growth rates, Including Heat using the Herbert –Pirt Relation for Electron Donor, thermodynamics and stoichiometry of Product Formation

TOTAL: 45 PERIODS

OUTCOMES:

At the end of this course, the student would have the ability

- To explain the theoretical concepts of thermodynamics and how it applies to energy conversion in technological applications and biological systems.
- To demonstrate the capability to analyze the energy conversion performance in avariety of modern applications in biological systems.
- To design and carry out bioprocess engineering experiments, and analyze and interpret fundamental data to do the design and operation of bioprocesses.
- To describe the criteria when two phases coexist in equilibrium and the vapour liquid equilibrium calculations microbial growth and product formation.

TEXT BOOKS:

- 1. Smith J.M., Van Ness H.C., and Abbot M.M. "Introduction to Chemical Engineering Thermodynamics", VIth Edition. Tata McGraw-Hill, 2003.
- 2. Narayanan K.V. "A Text Book of Chemical Engineering Thermodynamics", PHI, 2003.
- 3. Christiana D. Smolke, "The Metabolic Pathway Engineering Handbook Fundamentals", CRC Press Taylor & Francis Group, 2010.

REFERENCE:

Sandler S.I. "Chemical and Engineering Thermodynamics", John Wiley,1989.

BT3391 BASIC INDUSTRIAL BIOTECHNOLOGY

LTPC 3 0 0 3

OBJECTIVES:

- To make the students aware of the overall industrial bioprocess so as to help them to manipulate the process to the requirement of the industrial needs.
- The course prepares the students for the bulk production of commercially important modern Bioproducts, Industrial Enzymes, Products of plant and animal cell cultures

UNIT I INTRODUCTION TO INDUSTRIAL BIOPROCESS

Fermentation- Bacterial, Fungal and Yeast, Biochemistry of fermentation. Traditional and Modern Biotechnology- A brief survey of organisms, processes, products. Basic concepts of Upstream and Downstream processing in Bioprocess, Process flow sheeting – block diagrams, pictorial representation.

UNIT II PRODUCTION OF PRIMARY METABOLITES

9

Primary Metabolites- Production of commercially important primary metabolites like organic acids, amino acids and alcohols.

UNIT III PRODUCTION OF SECONDARY METABOLITES

9

Secondary Metabolites- Production processes for various classes of secondary metabolites: Antibiotics, Vitamins and Steroids.

UNIT IV PRODUCTION OF ENZYMES AND OTHER BIOPRODUCTS

9

Production of Industrial Enzymes, Biopesticides, Biofertilizers, Biopreservatives, Biopolymers Biodiesel. Cheese, Beer, SCP & Mushroom culture, Bioremediation.

UNIT V PRODUCTION MODERN BIOTECHNOLOGY PRODUCTS

9

Production of recombinant proteins having therapeutic and diagnostic applications, vaccines. Bioprocess strategies in Plant Cell and Animal Cell culture.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the students will be able

- To explain the steps involved in the production of bioproducts and methods to improve modern biotechnology.
- To apply basic biotechnological principles, methods and models to solve biotechnological tasks.
- To identify and debate the ethical, legal, professional, and social issues in the field of biotechnology.
- To design and deliver useful modern biotechnology products to the Society...

TEXT BOOKS:

- 1. Satyanarayana, U. "Biotechnology" Books & Allied (P) Ltd., 2005.
- 2. Kumar, H.D. "A Textbook on Biotechnology" IInd Edition. Affiliated East West Press Pvt.Ltd., 1998
- 3. Balasubramanian, D. etal., "Concepts in Biotechnology" Universities Press Pvt. Ltd., 2004.
- 4. Ratledge, Colin and Bjorn Kristiansen "Basic Biotechnology" IInd Edition Cambridge University Press. 2001.
- 5. Dubey, R.C. "A Textbook of Biotechnology" S.Chand & Co. Ltd., 2006.

REFERENCES:

- 1. Casida, L.E. "Industrial Microbiology", New Age International (P) Ltd, 1968.
- 2. Presscott, S.C. and Cecil G. Dunn, "Industrial Microbiology", Agrobios (India), 2005.
- 3. Cruger, Wulf and Anneliese Crueger, "Biotechnology: A Textbook of Industrial Microbiology", IInd Edition, Panima Publishing, 2000.
- 4. Moo-Young, Murrey, "Comprehensive Biotechnology", 4 Vols. Pergamon Press, (An Imprintof Elsevier) 2004.
- 5. Stanbury, P.F., A. Whitaker and S.J. Hall "Principles of Fermentation Technology", IInd Edition, Butterworth Heinemann (an imprint of Elsevier), 1995.
- 6. C.F.A Bryce and EL.Mansi, Fermentation microbiology & Biotechnology, 1999.
- 7. K.G.Ramawat & Shaily Goyal, Comprehensive Biotechnology, 2009, S.Chand publications.

LTPC 0031.5

TOTAL: 45 PERIODS

AIM

• To learn and understand the principles behind the qualitative and quantitative estimation of biomolecules (proteins, carbohydrates, lipids, metabolites etc.,) and laboratory analysis of the same in the body fluids.

EXPERIMENTS

- 1. General guidelines for working in biochemistry lab (theory)
- 2. Units of volume, weight, density and concentration measurements and their range in biological measurements. Demonstration of proper use of volume and weight measurement devices.
- 3. Accuracy, precision, sensitivity and specificity (theory)
- 4. Preparation of buffer -titration of a weak acid and a weak base.
- 5. Qualitative tests for carbohydrates distinguishing reducing from non-reducing sugars and keto from aldo sugars.
- 6. Quantitative method for amino acid estimation using ninhydrin distinguishing amino from imino acid.
- 7. Protein estimation by Biuret and Lowry's methods.
- 8. Protein estimation by Bradford and spectroscopic methods.
- 9. Extraction of lipids and analysis by TLC.
- 10. Estimation of nucleic acids by absorbance at 260 nm and hyperchromic effect (demo).
- 11. Enzymatic assay: phosphatase from potato.
- 12. Enzymatic assay: estimation of glucose by GOD-POD method after hydrolysis of starch with acid and specificity of the enzymatic method.

Equipment Needed for 20 Students

Autocalve	_1
Hot Air Oven	1
Incubators	2
Light Microscopes	4
Incubator Shaker	1
Colorimeter	2
Laminar Flow Chamber	2

Glassware:

Test tubes (atleast 10 per student)

Beakers – 50 ml, 100 ml, 250 ml one each per student, 500 ml and 1000 ml atleast 5 per batch of 20 students

Watch glasses one per student

Petridishes as required, glass cuvettes as needed

Burette – one per student

Glass pipette – one each in 0.5 ml, 1 ml, 5 ml and 10 ml with suitable pipette aid.

TLC plate as required for the experiment.

Chemicals: glucose, fructose, galactose, maltose, starch, amino acids, DNA, RNA, lipids and commercial enzymes as required. Other chemicals as per the requirement of the standard protocol and commercial kit procured from the vendor followed/ utilised by the department

TEXT BOOKS

- 1. Practical Biochemistry by R.C. Gupta and S. Bhargavan.
- 2. Introduction of Practical Biochemistry by David T. Phummer. (II Edition)

REFERENCES

- 1. Harpers Biochemistry Ed. R.K. Murray, D.K. Granner, P.A. Mayes and V.W.Rodwell, Appleton and Lange, Stanford, Conneticut.
- 2. Textbook of Biochemistry with clinical correlations. Ed. Thomas M. Devlin. Wiley Liss Publishers

BT3311 CELL AND MICROBIOLOGY LABORATORY

L T P C 0 0 3 1.5

AIM

 To demonstrate various techniques to learn the morphology, identification and propagation of cells and microbes

EXPERIMENTS

- 1. Introduction, Laboratory Safety, Use of Equipment; Sterilization Techniques
- 2. Microscopy Working and care of Microscope, phase contrast and fluorescent microscopy
- 3. Culture Media-Types and Use; Preparation of Nutrient broth and agar
- 4. Culture Techniques, Isolation and Preservation of Cultures- Broth: flask, test tubes; Solid:Pour plates, streak plates, slants, stabs
- 5. Identification of given plant, animal, bacterial cells and yeast/mould
- 6. Staining Techniques Simple, Differential- Gram's Staining, spore /capsule staining, Giemsa, and Leishman Staining
- 7. Quantification of Microbes: Sampling and Serial Dilution; Bacterial count in Soil TVC
- 8. Effect of Disinfectants- Phenol Coefficient, Antibiotic Sensitivity Assay
- 9. Osmosis and Tonicity and Tryphan Blue Assay
- 10. Growth Curve in Bacteria and Yeast
- 11. Staining for different stages of mitosis in AlliumCepa (Onion)
- 12. Effect of pH, Temperature, UV radiation on Growth Bacteria

Equipment Needed for 20 Stud	dents	BUDGUGULZHOULEDA
Autoclave	1	I MHOUGH KNUWLEDG
Hot Air Oven	1	
Incubators	2	
Light Microscopes	4	
Incubator Shaker	1	
Colorimeter	2	
Lamina Flow Chamber	2	

Glassware: Petridish, Test tubes, Microscopic slides, Inoculation, loop, Gas burner

Chemicals and media

Bacterial culture media, Yeast culture media, 70% ethanol ,antibiotics, Crystal violet, lodine, Safranin, India ink (capsule staining), Immersion oil

TOTAL: 45 PERIODS

OUTCOMES:

Students will be able to

- Understand the advanced technical information pertaining to laboratory bio-safety and preventive measures from pathogenic microorganism.
- Know the various aseptic techniques and sterilization methods.
- Develop the minimum skills to work on several important techniques for the study of microorganisms in the laboratory.
- To identify the various stages of mitosis

REFERENCES:

- 1. Cappuccino, J.G. and N. Sherman "Microbiology: A Laboratory Manual", 4th Edition, Addison-Wesley, 1999.
- 1. Collee, J.G. etal., "Mackie & McCartney Practical Medical Microbiology" 4th Edition, ChurchillLivingstone, 1996Rickwood, D. and J.R. Harris "Cell Biology: Essential Techniques", Johnwiley, 1996.
- 2. Davis, J.M. "Basic Cell Culture: A Practical Approach", IRL, 1994.

BT3401

MOLECULAR BIOLOGY

LTPC 3003

OBJECTIVES:

The course aims to

- Understand basic principles of molecular biology such as role of nucleic acids and proteins and how these molecules interact at intracellular level to regulate growth, division and development.
- Apply/relate such principles to manipulate the organisms appropriately for valuable outcome in the area of science and technology.

UNIT I CHEMISTRY OF NUCLEIC ACIDS

9

Introduction to nucleic acids: Nucleic acids as genetic material, Structure and physicochemical properties of elements in DNA and RNA, Biological significance of differences in DNA and RNA. Primary structure of DNA: Chemical and structural qualities of 3',5'-Phosphodiester bond. Secondary Structure of DNA: Watson & Crick model, Chargaff's rule, X-ray diffraction analysis of DNA, Forces stabilizes DNA structure, Conformational variants of double helical DNA, Hogsteen base pairing, Triple helix, Quadruple helix, Reversible denaturation and hyperchromic effect. Tertiary structure of DNA: DNA supercoiling.

UNIT II DNA REPLICATION & REPAIR

9

Overview of Central dogma. Organization of prokaryotic and eukaryotic chromosomes. DNA replication: Meselson & Stahl experiment, bi–directional DNA replication, Okazaki fragments, Proteomics of DNA replication, Fidelity of DNA replication, Inhibitors of DNA replication, Overview of differences in prokaryotic and eukaryotic DNA replication, Telomere replication in eukaryotes. D-loop and rolling circle mode of replication. Mutagens, DNA mutations and their mechanism, various types of repair mechanisms.

UNIT III TRANSCRIPTION

9

Structure and function of mRNA, rRNA and tRNA. Characteristics of promoter and enhancer sequences. RNA synthesis: Initiation, elongation and termination of RNA synthesis, Proteins of RNA synthesis, Fidelity of RNA synthesis, Inhibitors of transcription, Differences in prokaryotic and eukaryotic transcription. Basic concepts in RNA world: Ribozymes, RNA processing: 5'-Capping, Splicing-Alternative splicing, Poly 'A' tail addition and base modification.

UNIT IV TRANSLATION

Introduction to Genetic code: Elucidation of genetic code, Codon degeneracy, Wobble hypothesis and its importance, Prokaryotic and eukaryotic ribosomes. Steps in translation: Initiation, Elongation and termination of protein synthesis. Inhibitors of protein synthesis. Posttranslational modifications and its importance. Regulation of gene expression: lac- and trp-operon.

9

UNIT V CELL DIVISION & CELL CYCLE

Cell division: Mitosis, Meiosis and Cytokinesis. Cell cycle: Methods in cell cycle analysis. Regulation of cell cycle – Cell cycle check points, molecules and mechanisms of cell cycle regulation. Cell cycle modulators.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to

understand the composition, structure and characteristics of nucleic acids

understand the central dogma of life and its significance

comprehend the basic mechanisms of cell division and its status under proliferative and degenerative disorders

TEXTBOOKS:

- 1. Friefelder, David. "Molecular Biology." Narosa Publications, 1999
- 2. Weaver, Robert F. "Molecular Biology" IInd Edition, Tata McGraw-Hill, 2003.
- 3. Karp, Gerald "Cell and Molecular Biology: Concepts and Experiments" IVth Edition, John Wiley, 2005.
- 4. Friefelder, David and George M. Malacinski "Essentials of Molecular Biology" IInd Edition, Panima Publishing, 1993.

REFERENCES

- 1. Cooper GM, Hausman RE. The Cell: A Molecular approach. 7th Edition, 2015.
- 2. Krebs JE, Goldstein ES, Kilpatrick ST. Lewin's Essential GENES XII,12 th edition 2017
- 3. Nelson DL, Cox MM. Lehninger Principles of Biochemistry. 6th Edition, 2012.
- 4. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P. Molecular Biology of the cell, 6th Edition, 2014.
- 5. Lodish H, Berk A, MatsudairaP, Kaiser CA, Krieger M, Schot MP, Zipursky L, Darnell J. Molecular Cell Biology, 6th Edition, 2007.
- 6. Tropp, Burton E. "Molecular Biology: Genes to Proteins". IIIrd Edition. Jones and Bartlett, 2008.
- 7. Glick , B.R. and J.J. Pasternak. "Molecular Biotechnology : Principles and Applications of Recombinant DNA" 4th Edition. ASM, 2010.

GE3451 ENVIRONMENTAL SCIENCES AND SUSTAINABILITY L T P C 2 0 0 2

UNIT I ENVIRONMENT AND BIODIVERSITY

6

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ.

UNIT II ENVIRONMENTAL POLLUTION

6

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management. Case studies on Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

UNIT III RENEWABLE SOURCES OF ENERGY.

6

Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

UNIT IV SUSTAINABILITY AND MANAGEMENT

6

Development, GDP, Sustainability- concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

UNIT V SUSTAINABILITY PRACTICES

(

TOTAL: 30 PERIODS

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment, Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports. Sustainable energy: Non-conventional Sources, Energy Cycles-carbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization-Socio-economical and technological change.

TEXT BOOKS:

- 1. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 6th Edition, New Age International Publishers ,2018.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
- 3. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies,1st Edition, Pearson, 2011.
- 5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
- 7. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.

REFERENCE BOOKS:

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 2005.
- 5. Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 2013.

OBJECTIVES:

- To introduce the students to the mechanics of fluids through a thorough understanding of the
 properties of the fluids, behaviour of fluids under static conditions. The dynamics of fluids is
 introduced through the control volume approach which gives an integrated understanding of
 the transport of mass, momentum and energy.
- To expose to the applications of the conservation laws to a) flow measurements b) flow through pipes (both laminar and turbulent) and c) forces on vanes.

UNIT I FLUID PROPERTIES & FLUID MECHANICS

Fluid definition- compressible, in compressible fluids – coefficient of isothermal compressibility, Density, specific gravity, specific weight, surface tension, vapour pressure, viscosity. Newtonian and Non-newtonian fluids. Fluid statics – Barometric equation – application for incompressible and compressible fluids. Pressure changes in atmospheric air – Gauge and absolute pressure – pressure measurement with Bourdon gauge & manometers. Centre of pressure concept. Fluid Dynamics – equation of continuity – Bernoulli's equation – press loss in straight pipes – in fittings – expansion and contraction losses (applied to Newtonian Fluids only) Fluid flow measurement, Orifice, venture & Rotameter for Newtonian fluids

UNIT II FLOW OF FLUID THROUGH PACKINGS

Fluidization, Fluid transport Industrial application of fluid flow through packing-characterics of packed bed-Bed surface area-void fraction-Laminar flow through packed bed and turbulent flow-pressure drop experienced by the fluid-equations and application problems. Fluidization phenomena-Industrial application - minimum fluidization velocities. Industrial pipes and fittings- Fluid moving machinery-pumps centrifugal, Reciprocating-gear, Peristaltic pumps, Introduction togas moving machinery-Fans, blowers, compressors.

UNIT III CONDUCTION HEAT TRANSFER

Heat transfer phenomena-thermodynamics & heat transfer. Heat conduction – Fourier's equation –steady state conduction in plexor and radial systems – Resistance concept – series and resistance in conduction –and parallel resistance in conduction – unsteady state conduction – lumped capacity model – extended surfaces (Feris) –combined conduction & convection – 2 dimensional conduction.

UNIT IV CONVECTION HEAT TRANSFER

Forced and natural convection – Dimensional analysis, Dimensional numbers, Convection heat transfer coefficient, Correlations for flow over plate, through tubes, over spheres and cylinders, Agitated systems, Packed columns, condensation phenomena, Film and drop wise condensation over tubes, Billing phenomena, heat transfer coefficient.

UNIT V RADIATION HEAT TRANSFER AND HEAT TRANSFER EQUIPMENTS

Electromagnetic waves, energy of radiation, Planck's equation-Blackbody, Radiation exchange. Kirchhoff's law, Stefen Boltemann equation of radiant energy – Wien's law, Radiation exchange between surfaces – black, gray bodies, view factors-sample problems. Concept of overall heat transfer coefficient, Heat exchangers, types, boilers, Kettles, Heat exchanger Design concept. NTU concept.

TOTAL: 45 PERIODS

OUTCOMES:

- The students will be able to get a basic knowledge of fluids in static, kinematic and dynamic equilibrium.
- They will also gain the knowledge of the applicability of physical laws in addressing problems in hydraulics.

TEXT BOOKS:

- 1. R.K. Bansal A Textbook of Fluid Mechanics, Laxmi Publications; Second edition, 2020
- 2. Heat & Mass Transfer by P. K. Nag, Tata McGraw Hill IIIrd Edition 2003

REFERENCE:

- 1. K.A.Gavhane, Fluid flow Operations, Nirali publishers, 1st Edition, 2018
- 2. R.K.Rajput A text Book of Heat & Mass Transfer SI Units, S.Chand publisher, 2018
- 3. Geankoplis. C.J "Transport Process & separation Process Principles" IVth Edition Prentice Hall of India 2013.

BT3451

ANALYTICAL TECHNIQUES IN BIOTECHNOLOGY

LTPC 3003

OBJECTIVES:

To enable the students

- To have a fundamental knowledge about the Light spectrum, Absoprtion, Fluorescence, NMR, Mass spectroscopy
- To acquire knowledge on the different chromotographic methods for separation of biological products.

UNIT I INTRODUCTION TO SPECTROMETRY

Properties of electromagnetic radiation- wave properties – components of optical instruments – Sources of radiation – wavelength selectors – sample containers – radiation transducers – Signal process and read outs – signal to noise ratio - sources of noise – Enhancement of signal to noise - types of optical instruments – Principle of Fourier Transform optical Measurements.

UNIT II MOLECULAR SPECTROSCOPY

. 9

9

Molecular absorption spectrometry – Measurement of Transmittance and Absorbance – Beer's law – Instrumentation - Applications -Theory of fluorescence and Phosphorescence – Instrumentation – Applications – Theory of Infrared absorption spectrometry – IR instrumentation – Applications – Theory of Raman spectroscopy – Instrumentation – applications

UNIT III MAGNETIC RESONANCE SPECTROSCOPY AND MASS SPECTROMETRY

Theory of NMR – environmental effects on NMR spectra – chemical shift- NMR-spectrometers – applications of 1H and 13C NMR- Molecular mass spectra – ion sources – Mass spectrometer. Applications of molecular mass - Electron paramagnetic resonance- g values – instrumentation.

UNIT IV SEPARATION METHODS

9

9

General description of chromatography – Band broadening and optimization of column performance- Liquid chromatography – Partition chromatography – Adsorption chromatography – Ion exchange chromatography -size exclusion chromatography- Affinity chromatography- principles of GC and applications – HPLC- Capillary electrophoresis – Applications.

UNIT V ELECTRO ANALYSIS AND SURFACE MICROSCOPY

9

Electrochemical cells- Electrode potential cell potentials – potentiometry- reference electrode – ion selective and molecular selective electrodes – Instrument for potentiometric studies – Voltametry – Cyclic and pulse voltametry- Applications of voltametry . Study of surfaces – Scanning probe microscopes – AFM and STM.

TOTAL: 45 PERIODS

OUTCOME:

• On completion of the course, students will have a better understanding of spectroscopy and the separation techniques used for biological products.

TEXT BOOKS:

- 1. Skoog, D.A. F. James Holler, and Stanky, R.Crouch "Instrumental Methods of Analysis". Cengage Learning, 2007.
- 2. Willard, Hobart, etal., "Instrumental Methods of Analysis". VIIth Edition, CBS, 1986.
- **3.** Fifield F.W., . Principles and Practice of Analytical Chemistry. Blackwell, Scientific Publishers,2016

REFERENCES:

- 1. Sharma, B.K. "Instrumental Methods of Chemical Analysis: Analytical Chemistry", Krishna Prakashan Media (P) Ltd, 2014
- 2. Haven, Mary C., etal., "Laboratory Instrumentation". 4th Edition, Wiley India Pvt Ltd, 2010
- 3. Philopose P.M.Analytical Biotechnology. Domihant Publishers & distributors, New Delhi, 2016.

BT3491 CHEMICAL PROCESS CALCULATIONSIN BIOTECHNOLOGIST

L T P C 3 0 0 3

OBJECTIVE:

- To enable the students to learn about basic concepts of chemical process and calculations
- The course aims to develop skills of the students in the area of Chemical Engineering with emphasis in process calculations and fluid mechanics.
- This will enable the students to perform calculations pertaining to processes and operations.

UNIT I BASIC CHEMICAL CALCULATIONS

9

Dimension – Systems of units esp. engineering FPS, Engineering MKS & SI systems – Conversion from one system to the other – composition of mixtures and solutions – mass fraction, mass %, mole fraction, mole %, mass ratios, molarity, molality, normality, ppm, composition by density.

UNIT II IDEAL AND ACTUAL GAS EQUATIONS

9

Ideal and actual gas equations, Vander Walls, compressibility factor equations, Application to pure gas & gas mixtures – partial pressures, partial volumes – Air-water vapour systems, Humidity, Molar Humidity, Relative Humidity, % Saturation, humid Volume – Humidity chart – wet, Dry bulb, Dew point temperatures, pH of solutions, Vapour pressure.

UNIT III MATERIAL BALANCE

9

Material balance concept – overall & component – material balance applications for evaporator,

gas absorber without reaction, Distillation (Binary system), Liquid extraction, solid-liquid extraction, drying, crystallization, Humidification, Reverse Osmosis separation and Mixing Recycle and Bypass illustration

UNIT IV ENERGY BALANCE

9

General energy balance equation for open systems, closed system sensible heat calculation, Heat required for phase change thermo chemistry, application of steam tables, Saturated and superheated steam application in bioprocess

UNIT V CHEMICAL REACTION

q

Chemical Reaction-Limiting, excess component, Fractional conversion, Percent conversion, Fractional yield in multiple reactions. Simple problems, Combustion Reactions.

TOTAL: 45 PERIODS

OUTCOMES:

Upon success completion of this course, the students will be able to:

- Solve problems related to units and conversions and fit the given data using the methodologies
- Solve problems related to material and energy balance concepts & design reactors for biochemical processes
- Apply their knowledge in the field of biochemical engineering from the principles of Thermodynamics

TEXT BOOKS:

- 1. 1. Bhatt B.I & SB Thakore, Stoichiometry Fifth edition Tata McGraw Hill 2017
- 2. K.A.Kavhane, Introduction to Process calculations, Nirali Publishers, 1st Edition, 2016
- 3. Himmelblau D.M "Basic principles & Calculations in Chemical Engineering" 8th edn PHI 2014.

REFERENCES:

- McCabe W.L & J.C.Smiith & P.Harriot "Unit operations of chemical Engineering" 7thEdn McGraw Hill 2017
- 2. S. Pushpavanam, Introduction to Chemical Engineering, PHI Learning Pvt. Ltd., 2012
- 3. Geankoplis C.J. "Transport process & Separation process Principles 4th edition-PHI 2006.

BT3452

INDUSTRIAL ENZYMOLOGY

LTPC 3003

OBJECTIVES:

To enable the students

- To learn enzyme reactions and its characteristics along with the production and purification process
- To give the student a basic knowledge concerning biotransformation reactions with the usage of enzymes

UNIT I INTRODUCTION TO ENZYMES

Classification of enzymes. Mechanisms of enzyme action; concept of active site and energetics of enzyme substrate complex formation; specificity of enzyme action; principles of catalysis – collision theory, transition state theory; role of entropy in catalysis.

UNIT II KINETICS OF ENZYME ACTION

Kinetics of single substrate reactions; estimation of Michelis – Menten parameters, multisubstrate reactions - mechanisms and kinetics; turnover number; types of inhibition & models –substrate, product. Allosteric regulation of enzymes, Monod Changeux Wyman model, pH and temperature effect on enzymes & deactivation kinetics.

UNIT III ENZYME IMMOBILIZATION AND BIOSENSORS

9

9

Physical and chemical techniques for enzyme immobilization – adsorption, matrix entrapment, encapsulation, cross-linking, covalent binding etc., - examples, advantages and disadvantages, design of enzyme electrodes and their application as biosensors in industry, healthcare and environment.

UNIT IV PURIFICATION AND CHARACTERIZATION OF ENZYMES FROM NATURAL 9 SOURCES

Production and purification of crude enzyme extracts from plant, animal and microbial sources; methods of characterization of enzymes; development of enzymatic assays

UNIT V BIOTRANSFORMATION APPLICATIONS OF ENZYMES

9

Hydrolytic- Ester bond, Amide, Epoxides, Nitriles, Reduction reactions –aldehydes, Ketones, C=C, Oxidation reactions – Alkanes, Aromatic, Baeyer-Villiger, Enzymes in organic synthesis – esters, amide, peptide, Modified and Artificial Enzymes, Catalytic antibodies

TOTAL: 45 PERIODS

OUTCOMES:

- The knowledge on enzyme and enzyme reactions will be the key step in to proceed towards various concepts in biotechnology.
- The theoretical and practical aspects of kinetics will provide the importance and utility of enzyme kinetics towards research.
- The process of immobilization has been increased steadily in food, pharmaceutical and chemical industries and thus this study will provide simple and easy method of implementation.
- Ideas on Processing, Production and Purification of enzymes at an industrial scale will be helpful to work technologically.

TEXT BOOKS:

- 1. Trevor Palmer, 5th edition Enzymes Horwood Publishing Ltd, 2001
- 2. Faber K, Biotransformations in Organic Chemistry, 2nd Edition, Springer

REFERENCES:

- 1. Harvey W. Blanch, Douglas S. Clark, Biochemical Engineering, 2nd Edition, CRC Press, 1997
- 2. James M. Lee, Biochemical Engineering, PHI, USA.
- 3. James. E. Bailey & David F. Ollis, Biochemical Engineering Fundamentals, 2nd Edition, McGraw Hill Education; 2017.
- 4. Wiseman, Enzyme Biotechnology, Ellis Horwood Pub. Volume 4, 1980

BT3411

CHEMICAL ENGINEERING LABORATORY FOR BIOTECHNOLOGISTS

L T P C 0 0 3 1.5

OBJECTIVES:

- To provide basic understanding of chemical engineering principles and operations
- Course will enable the students to apply the principles in other chemical engineering and biotechnology subjects offered in higher semesters

EXPERIMENTS

- 1. Flow measurement Orifice meter
- 2. Flow measurement Venturimeter,
- 3. Flow measurement Rotameter
- 4. Pressure drop in flow through pipes
- 5. Pressure drop in flow through packed column
- 6. Pressure drop in flow through fluidized beds
- 7. Characteristics of centrifuge pump
- 8. Filtration through plate and frame filter press
- 9. Filtration in leaf filter
- 10. Heat transfer characteristics in heat exchanger
- 11. Simple and steam distillation

Equipment Needed for 30 Students

Colorimeter 2
Filter leaf 1
Orifice meter 1
Venturimeter 1
Rotameter 1

Glassware, Chemicals, Media as

required

OUTCOMES:

Upon completion of this practical course the student will

- Have knowledge on the basic principles of chemical engineering
- Be able to apply the skill of material balance and energy balance in unit operations unit process of chemical engineering and biotechnology
- Be able to analyze the principles of chemical engineering and its applications in chemical, mechanical and biological perspectives
- Understand the design and working principles of fluid moving machinery and transport phenomena

TOTAL: 45 PERIODS

BT3461

ANALYTICAL INSTRUMENTATION LABORATORY

L T P C 0 0 3 1.5

TOTAL: 45 PERIODS

OBJECTIVES:

To train the students

- To have a practical hands on experience on Absoprtion Spectroscopic methods
- To acquire experience in the purification by performing chromatography
- To validate and analysis using spectrometric and microscopic techniques

EXPERIMENTS 60

- 1. Precision and validity in an experiment using absorption spectroscopy.
- 2. Validating Lambert-Beer's law using KMnO4
- 3. Finding the molar absorbtivity and stoichiometry of the Fe (1,10 phenanthroline)3 using absorption spectrometry.
- 4. Finding the pKa of 4-nitrophenol using absorption spectroscopy.
- 5. UV spectra of nucleic acids.
- 6. Chemical actinometry using potassium ferrioxolate.
- 7. Estimation of SO4-- by nephelometry.
- 8. Estimation of Al3+ by Flourimetry.
- 9. Limits of detection using aluminium alizarin complex.
- 10. Chromatography analysis using TLC.
- 11. Chromatography analysis using column chromatography.

Equipment Needed for 20 Students

Colorimeter 2

Glassware, Chemicals, Media as required

OUTCOME:

• The students would visualize and interpret the theory of spectroscopic methods by hands on experiments.

REFERENCES:

- 1. Skoog, D.A. etal. "Principles of Instrumental Analysis", Vth Edition, Thomson / Brooks Cole,1998.
- 2. Braun, R.D. "Introduction to Instrumental Analysis", Pharma Book Syndicate, 1987.
- 3. Willard, H.H. etal. "Instrumental Methods of Analysis", Vlth Edition, CBS, 1986.
- 4. Ewing, G.W. "Instrumental Methods of Chemical Analysis", Vth Edition, McGraw-Hill, 1985.